Error de pronostico

Medición del error en pronósticos de demanda

Wikipedia define error de medición como la diferencia entre un valor que se mide y un valor verdadero. Si esto lo transportamos al ámbito empresarial, en nuestros pronósticos de demanda, y en el sentido más general, podemos definir error de pronóstico como la comparación entre el valor pronosticado y el valor real.

El error de pronóstico, qué es, cómo se calcula y con qué medidas se hace; es el tema de hoy en Pronósticos de demanda.

Con esto en mente, el error de pronóstico estaría dado por:

Error de pronóstico=Demanda real – valor pronosticado

Para qué calcular el error pronóstico

¿Qué utilidad tiene calcular el error de pronóstico de demanda? Su cálculo nos permite tomar decisiones frente a qué método de pronóstico es el mejor y logran detectar cuando algo en nuestra previsión de la demanda no está marchando bien, con lo que conseguimos cambiar el rumbo de nuestras decisiones a fin tomar las mejores elecciones.

Cuál es la causa del error de pronóstico

Hay dos fuentes de error en pronósticos: Sesgados y aleatorios.

El primero, también llamado sistemático es ocasionado por un error constante, por ejemplo una mala interpretación de la demanda, usar variables incorrectas o con relaciones equivocadas. Este tipo de error se verá minimizado de acuerdo a la experticia del administrador de operaciones.

El error aleatorio es aquel que no tiene explicación, es decir, es el error originado por factores imprevisibles y por ende no se conoce qué es lo que lo causa.

Con esto en mente, debemos tener claro que siempre va a haber error en el cálculo de un pronóstico de demanda. En la práctica, se intenta minimizar ambos tipos de errores eligiendo el mejor método de pronóstico, y es por eso que existen la medición del error en pronósticos de demanda.

Suma acumulada de errores de pronóstico (CFE)

Es la medida más básica de todas y es la que da origen a las demás. Es la suma acumulada de los errores de pronóstico. Nos permite evaluar el sesgo del pronóstico. Por ejemplo, si a través de los periodos el valor real de la demanda siempre resulta superior al valor de pronóstico, la CFE será más grande, indicando la existencia de un error sistemático en el cálculo de la demanda.Suma acumulada de errores de pronóstico

Desviación media absoluta (MAD)

Mide la dispersión del error de pronóstico o dicho de otra forma, la medición del tamaño del error en unidades. Es el valor absoluto de la diferencia entre la demanda real y el pronóstico, dividido sobre el número de periodos.Desviación media absoluta MAD

Error cuadrático medio (MSE)

Al igual que la DAM, el MSE es una medida de dispersión del error de pronóstico, sin embargo esta medida maximiza el error al elevar al cuadrado, castigando aquellos periodos donde la diferencia fue más alta a comparación de otros. En consecuencia, se recomienda el uso del MSE para periodos con desviaciones pequeñas.Error cuadrático medio MSE

Error porcentual medio absoluto (MAPE)

El MAPE nos entrega la desviación en términos porcentuales y no en unidades como las anteriores medidas. Es el promedio del error absoluto o diferencia entre la demanda real y el pronóstico, expresado como un porcentaje de los valores reales.Error porcentual medio absoluto MAPE

Otros autores le llaman Porcentaje de error medio absoluto (PEMA) o lo manejan como EPAM.

Error de pronóstico MAD/MEAN, GMRAE y SMAPE

Existen otras medidas de error de pronóstico menos comunes, generalmente variaciones de MAPE y MAD. El MAD/MEAN actúa sobre datos intermitentes y de bajo volumen, mientras el GMRAE es usado para evaluar el grado de error del pronóstico fuera de la muestra. En pronóstico experto hay más información sobre estas y otras medidas de error como SMAPE.

Cómo calcular las medidas de error de pronóstico

En este ejemplo de errores de pronóstico, tomamos la empresa IngE que vende televisores y su demanda a través del año fue la siguiente:Ejercicio ejemplo error de pronóstico

Igualmente a través del año la empresa pronosticó la demanda con el método de promedio móvil simple. Estos fueron los resultados:Demanda con pronostico-ejercicio-error de pronostico.png

Para calcular cada una de las medidas de error mostradas hasta ahora:

  • En una columna para cada periodo calculamos el error de pronóstico hallando la resta entre la demanda real y el pronóstico.
  • En otra columna restamos en valor absoluto la demanda real con el pronóstico para cada periodo. Lo que en otras palabras vendría siendo el valor absoluto del error de pronóstico. Esto lo hacemos para calcular el MAD.
  • En otra columna elevamos al cuadrado el error de pronóstico de cada periodo. Esto lo hacemos para calcular el MSE.
  • En otra columna, dividimos la demanda real / mad.
  • Hacemos la suma de los resultados que obtuvimos para cada periodo en cada columna.

Lo descrito anteriormente en nuestro ejercicio sería algo como esto:Tabla-ejercicio-medidas de error.png

Los cálculos se realizan a partir del periodo 4, debido a que nuestro promedio móvil simple tiene n=3, por ende en los tres primeros periodos no tenemos pronóstico de demanda.

Hecho esto, ya estamos a un paso de obtener nuestras medidas de error.

Teniendo en cuenta que el número de periodos que pronosticamos es de 9:

  • La suma acumulada de errores de pronóstico es 26. Ya la teníamos calculada al hacer la sumatoria en la columna de error de pronóstico.
  • La desviación absoluta media (MAD) la calculamos dividiendo 97,33 entre 9.
  • El error cuadrático medio (MSE) lo calculamos dividiendo 1079,56 entre 9.
  • Dividimos 183% entre 9 para calcular el error porcentual absoluto medio (MAPE)

Esto es lo que obtenemos:

CFE, MAD, MSE y MAPE. Ejercicio ejemplo

Cómo interpretar las medidas de error de pronóstico

Las medidas de error de pronóstico calculadas para un solo método en un solo período de tiempo carecen de significado. Su utilidad radica cuando comparamos las medidas de error con las medidas de otros métodos de pronóstico o con otros períodos de tiempo.

¿Cómo sería esto en nuestro ejemplo? Para nuestro siguiente ejemplo vamos a considerar únicamente métodos de pronóstico cuantitativos: Promedio móvil simple y ponderado y suavización exponencial simple y doble. La demanda la calculamos a partir del periodo 4 hasta el período 15.

El n a usar en el promedio simple es de 3. En el promedio ponderado usaremos pesos de 40%, 30% y 30% para el periodo más reciente, intermedio y más lejano respectivamente. La constante de suavización alfa en el alisado exponencial será de 0,4. La constante de suavización alfa y delta en el alisado exponencial doble ambas serán de 0,3.

Vale decir que no jugué mucho con estos datos y coloqué los primeros valores que se me vinieron a la mente. Pues bien, los pronósticos calculados con cada método serían:

Tabla-solución-ejercicio-medida de error.png

Con estos datos ya tenemos para determinar por medio de las medidas de error, cuál es el mejor método durante los 12 periodos de medición:

Solucion-ejercicio-pronosticos-medicion del error.png

Inicialmente analicemos la demanda. La demanda presenta picos y fondos mostrando tanto tendencias crecientes como decrecientes. Esto se ve reflejado en los métodos de suavización que responden mejor a las medidas de MAD, MSE y MAPE comparados a los promedios.

En este sentido, si le hubiera asignado al promedio ponderado un mayor peso para los datos más recientes, se lograría obtener mejores medidas de MAPE, MSE y MAD.

Y por supuesto los suavizamientos son métodos susceptibles de ser mejorados. La definición de las constantes de suavización por ensayo y error seguro nos habría entregado mejores métricas. Al observar el CFE inferimos que hay un grado de error de sistematización en las suavizaciones y es necesario cambiar las constantes de suavizamiento. Debido a esto los promedios se ven mejor en esta medida.

Hecho esto y considerando la naturaleza de los datos a tener tendencias crecientes y decrecientes, yo me quedaría con el método de suavización exponencial ajustada.


Te podría interesar


Plantilla en Excel error de pronóstico de demanda

Esta plantilla en Excel te permite determinar el error de pronóstico de demanda. Las celdas en blanco son las que se diligencian: la demanda y el pronóstico. Las celdas grises tienen las fórmulas para mostrar los resultados.

Si no quieres hacer una acción social a cambio del archivo o no cuentas con una red social para hacer la descarga, coloco a tu disposición el archivo en este espacio: Plantillas en excel


Derechos de imagen

La imagen de cabecera del post es de: Freepik

Si esto te ha sido útil...

Únete a la comunidad. ¡Es gratis! Vas a comenzar a recibir en tu bandeja de correo recursos, herramientas y novedades exclusivas para miembros de Ingenio Empresa.

3 comentarios en “Medición del error en pronósticos de demanda

Deja un comentario